

Manipulation of wake asymmetries of a blunt body – wake equilibrium and drag reduction

Y. Haffner, J. Borée, A. Spohn

Institut Pprime - UPR 3346 CNRS, ISAE-ENSMA, Université de Poitiers - France

T. Castelain

Université de Lyon – LMFA UMR CNRS 5509, Ecole Centrale de Lyon, Université Lyon 1 – France

ANR project Activ_ROAD (ANR15CE220002)

71st APS DFD Meeting – Atlanta – 18-20th November 2018

Motivations

Introduction

Asymmetries in the wake of simple blunt bodies

• Symmetry-breaking mode leading to large-scale wake asymmetries

Bi-modal or static asymmetry

• Asymmetries due to imbalance between momentum flux

Weak underbody flow

<u>Change of asymmetry or wake type only caused by minor geometric or flow conditions changes</u>

Aspect ratio

Yaw

Bonnavion JFM 2018

Pitch

Gentile JFM 2017

Underbody flow changes

💯 Castelain IJWEA 2018

Ground clearance

Perturbing bodies

Barros JFM 2017

Grandemange PoF 2014

What do we want ?

Introduction

Drag reduction of blunt bodies ?

- Wakes asymmetries, change of topology and sensitivity of primary practical importance
- What is the best control strategy in each situation ? On which drag generating mechanism should we play ?
- Can we draw an efficient, robust and general control strategy to reduce drag in various conditions ?

Model and wind-tunnel setup

Experimental setup

2 % precision on C_p

Bifurcation scenario

Manipulation of unforced flow

Base pressure barycentre

 $\overline{C_p}$

-0.15

-0.26

 \square_0

Base pressure distribution

Barycentre location pdf

 z_b

 y_b

Bifurcation scenario

Manipulation of unforced flow

Bifurcation scenario

Manipulation of unforced flow

Different wake equilibrium related to different drag states

Forcing apparatus

Wake symmetrization

Forcing flow asymmetries

-0.2

U² -0.21

ŕ∎ 。。

۰Ĭ

Wake symmetrization Forcing flow asymmetries 0.1Natural flow i 0.08 z^b 0 0 0 0 0.040

-0.2

0.21 S

ŕ∎ 。。

0 8

0

Wake symmetrization

Forcing flow asymmetries

-0.2

0.21 C

°.

0

Global pressure recovery in the wake

Forcing flow asymmetries

Massive reorganization of the inner recirculating region

Forcing flow asymmetries

Drag changes explained by the coupling between wake bluffness AND symmetry of the recirculating region

Flow control efficiency

Forcing flow asymmetries

	Configuration – Forcing	C_{μ}	γ_D	η
	$ m Natural - F_{TBLR}$	0.014	0.93	38.2
\square	$Natural - F_{TBLR}$	0.021	0.89	31.1
	$Natural - F_{BLR}$	0.011	0.94	44.8

Top perturbed – F_{TBLR}

Top perturbed – F_{TBLR}

Top perturbed – $F_{\rm BLR}$

Top perturbed – $F_{\rm BLR}$

Top perturbed – $F_{\rm B}$

Top perturbed – $F_{\rm B}$

Control efficiency

Power expenses in control

Power saving by drag reduction

Control strategies mainly based on symmetrisation of energetic interest

0.93

0.87

0.96

0.93

0.95

0.93

51.9

51.9

40.6

38.2

137.7

103.7

0.012

0.018

0.009

0.012

0.003

0.005

Conclusions and outlooks

Conclusions

- Two distinct drag reduction mechanisms : wake bluffness and wake symmetry
- Coupling of both to achieve drag reduction in various asymmetric configurations : interest in adaptive control for changing real flow conditions
- Generalization to other asymmetries (cylinder perturbations similar to pitch, yaw or ground clearance variation in selecting the wake asymmetry)

Thank you for your attention.

Any questions ?

ANR project Activ_ROAD (ANR15CE220002)

71st APS DFD Meeting – Atlanta – 18-20th November 2018

Base drag evolution

Manipulation of unforced flow

Global drag changes

Forcing flow asymmetries

-0.2

0.21 C

• ••

0

0

Global drag changes

Forcing flow asymmetries

-0.2

0.21 C

°

0

0