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Introduction

e Interest in Aerodynamics of square-back bodies

e Recent projects on flow control for drag reduction with fluidic injection
— Use of synthetic or pulsed jets at 2D and 3D model rear combined with flaps.

Definition of a new model under the framework of Activ_ROAD program (ANR) to study
the effects of flow control on simplified personal cars and trucks.
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Introduction

e lIdealized pulsed jet time-evolution

Command signal V
Velocity at nozzle exit U
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Introduction

e lIdealized pulsed jet time-evolution

Command signal V
Velocity at nozzle exit U

o Interest in sharp velocity increase after opening : vorticity,

At

DC.T

T

o Fast-response actuator : high-frequency periodic or non-periodic time evolution of

velocity,

o Manageable DC : reduction of flow control cost

LMFA & Ampeére Unsteady pulsed jets & Acoustic waves

09 November 2017

3 /17



Introduction

e lIdealized pulsed jet time-evolution

Command signal V

Velocity at nozzle exit U At
Y —

DC.T

o Interest in sharp velocity increase after opening : vorticity,
o Fast-response actuator : high-frequency periodic or non-periodic time evolution of

velocity,
o Manageable DC : reduction of flow control cost

% Valve
Jox

e Basic set-up for pulsed jet generation

— Tank
L] iy
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Introduction

Some typical results obtained
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‘ What physical mechanism(s) may have such

an influence on the pulsed jet characteristics ?
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Introduction

Outline

© Experimental set-up

@ Pneumatic setup
@ Valve and control board
© Flow measurements

© Results

@ lllustration of typical results
@ Processing using dimensionless parameters
© Basic modeling

© Conclusions
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Experimental set-up

Experimental set-up

e Pneumatic set-up

Main
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e Pneumatic set-up
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e Pneumatic valve : high speed two-port solenoid valve (SMC SX11-AJ)
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e Pneumatic valve : high speed two-port solenoid valve (SMC SX11-AJ)
e Pressure return force to close the valve instead of classical return spring.
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e Pneumatic set-up

Main

=-

Pressure

Tank

regulator

Tank b Nozzle

é Valve

e Pneumatic valve : high speed two-port solenoid valve (SMC SX11-AJ)
e Pressure return force to close the valve instead of classical return spring.
e Control board specifically developed by Ampeére

commande (V)

TTL control signal

ton torr

e Phase : Current increase (470 us)
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e Phase : Current control
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Experimental set-up

e Pneumatic set-up

Main
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Pressure transducer

Pressure

Tank

regulator

é Valve

Tank b Nozzle

e Pneumatic valve : high speed two-port solenoid valve (SMC SX11-AJ)
e Pressure return force to close the valve instead of classical return spring.

e Control board specifically developed by Ampeére
TTL control signal

commande (V)

ton torr

e Phase : Current increase (470 us)
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e Phase : Current control
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e Pressure measurements upstream of the valve (Kulite ETL-1-140)
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Experimental set-up

Experimental set-up

e Pneumatic set-up

Pressure transducer HW
Valve

Pressure

Main Tank
Tank B an IE_I Nozzle

regulator

e Pneumatic valve : high speed two-port solenoid valve (SMC SX11-AJ)
e Pressure return force to close the valve instead of classical return spring.

e Control board specifically developed by Ampeére
TTL control signal

ton torr

commande (V)
Ao Rk N oW s U oo

e Phase : Current control

e e Phase @ : Current increase (470 us)

Vdlve current

Q

100mA

T time

e Pressure measurements upstream of the valve (Kulite ETL-1-140)
e Velocity measurements at the nozzle exit (Dantec 55P01 probe and Dantec miniCTA)
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Typical result for an actuation frequency of 10 Hz
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e Noticeable oscillations on pressure and velocity signals, vanishing at the end of each phase
(opening or closing)
e Peculiarity of hw signal at closing : rectified waveform

e For each phase, differences in oscillation frequency between the flow upstream and
downstream the valve.

e For each location (downstream/upstream), fixed oscillation frequency.
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Test-cases for identification of internal acoustic waves

Nine different configurations

e with variation in inlet pressure Pi,, Lup and Lyown

e at fixed duty-cycle (50%) and actuation frequency (10 Hz)

Pressure transducer

%’ Valve HW
. Pressure %
Main P
in
Tank regulator Z Nozzle
Lup Ldown
Pin [barA] | Lup [mm] Lgown [mm]
2.5 450 185 210 250
2.88 206 155 169 177 200
3.7 206 155 177

— Normalization possible between the different results obtained by varying Pin, Lyown and Lup
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Identification of a time delay

Normalized upstream pressure Normalized downstream velocity
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e the time delays at opening and at closing are different,
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e the time delays at opening and at closing are different,

e at closing, the time delay decreases when P, is increased.
— valve working principle : closing is obtained by pressure force (pneumatic spring)
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Identification of a time delay

Normalized upstream pressure Normalized downstream velocity
OPENING OPENING
1.05 25
Z 2
8
ELS
> 1
> 05
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——P =2.88bar %10
—— P =3.70bar
1.05

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
time (s) %103 time (s) %103

e the time delays at opening and at closing are different,

e at closing, the time delay decreases when P, is increased.
— valve working principle : closing is obtained by pressure force (pneumatic spring)

e at opening, the time delay is independent of P;,,
— Opening of the valve done by the electromechanical force of the solenoid, thus delay
less sensitive to pressure
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Modelling

Time delay modelling

Lyown = 185 mm
Lyown = 210 mm
Lyown = 250 mm

OPENING CLOSING

steady

VIV,

0
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time (s) %107

time (s)

e time delay in velocity signals increases linearly with the downstream length Lyown for a

given pressure.
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Modelling

Time delay modelling

Lyown = 185 mm
Lyown = 210 mm
Lyown = 250 mm

OPENING CLOSING

steady
S

V/V
A

time (s) %107

e time delay in velocity signals increases linearly with the downstream length Lyown for a
given pressure.
e Movement of the mobile part of the valve is very fast, time delay assumed to result from

o a delay due to the valve opening (or closing)
o plus a delay due to the wave propagation from the valve to the sensor (pressure at

upstream, and velocity at downstream)
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Modelling

Time delay modelling

Lyown = 185 mm
Lyown = 210 mm
Lyown = 250 mm

OPENING CLOSING

steady

VIV,

05 1 1.5 2
time (s) %107

e time delay in velocity signals increases linearly with the downstream length Lyown for a
given pressure.
e Movement of the mobile part of the valve is very fast, time delay assumed to result from

o a delay due to the valve opening (or closing)
o plus a delay due to the wave propagation from the valve to the sensor (pressure at

upstream, and velocity at downstream)

Good match with time delays identified from experimental data
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Modelling

Normalization

Normalized results from the 9 tested configurations.
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e upstream (resp. downstream) oscillation frequency independent of downstream (resp.
upstream) length,
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Modelling

Normalization

Normalized results from the 9 tested configurations.
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e upstream (resp. downstream) oscillation frequency independent of downstream (resp.
upstream) length,

e oscillation frequency after closing is equal to that after opening
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Modelling

Normalization
Normalized results from the 9 tested configurations.
OPENING OPENING
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e upstream (resp. downstream) oscillation frequency independent of downstream (resp.

upstream) length,
e oscillation frequency after closing is equal to that after opening
oscillation frequencies are independent of the inlet pressure supply.
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Modelling

Normalization

Normalized results from the 9 tested configurations.

CLOSING

CLOSING
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e upstream (resp. downstream) oscillation frequency independent of downstream (resp.
upstream) length,
e oscillation frequency after closing is equal to that after opening
oscillation frequencies are independent of the inlet pressure supply.
e the amplitude of the first peaks of pressure (resp. velocity) are :
o nearly proportional to Pyeady (resp. Viteady).
o independent of the lengths of the connecting pipes,

LMFA & Ampeére Unsteady pulsed jets & Acoustic waves 09 November 2017 11 / 17



Modelling

Normalization

Normalized results from the 9 tested configurations.

CLOSING
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e upstream (resp. downstream) oscillation frequency independent of downstream (resp.
upstream) length,
e oscillation frequency after closing is equal to that after opening
oscillation frequencies are independent of the inlet pressure supply.
e the amplitude of the first peaks of pressure (resp. velocity) are :
o nearly proportional to Pyeady (resp. Viteady).
o independent of the lengths of the connecting pipes,
e the oscillation damping coefficient is independent of the inlet pressure and the lengths
Ldown and Lup.
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Modelling

Pressure oscillations upstream of the valve

After closing

Valve

Tank
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Modelling

Pressure oscillations upstream of the valve

After closing

)

Tank

—_—

Lup

Valve

Lup

fny1 = (2n+1)ﬁ; = ﬁ

Good agreement between the experiments and the closed-end tube model
(max. deviation of 5% in estimation of f;)
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Modelling
Pressure oscillations upstream of the valve

After closing

Valve
Tank = [
Lup
PE—
L font1 = (2n+1) 7~ | A = 77—
up 4Lup 4Lup

Good agreement between the experiments and the closed-end tube model
(max. deviation of 5% in estimation of f)

After opening
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Modelling

Pressure oscillations upstream of the valve

After closing

Valve
Tank = [
Lup
PE—
L font1 = (2n+1) 7~ | A = 77—
up 4Lup 4Lup

Good agreement between the experiments and the closed-end tube model
(max. deviation of 5% in estimation of f)

After opening

OPENING

CLOSING

1
1
1 (tty) x T
1
1
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Modelling

Pressure oscillations upstream of the valve

After closing

Valve
Tank = [
Lup
PE—
L font1 = (2n+1)—; | A = 77—
up Ilup Ilup

Good agreement between the experiments and the closed-end tube model
(max. deviation of 5% in estimation of f)

After opening

OPENING

CLOSING

1

1

1 (tty) x T
1

1

(t-td) xf

Closed-end tube model still holds
Physical interpretation : Contraction due to valve throat = closed termination
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Modelling

Velocity oscillations downstream of the valve

HW

E Valve
m_r Nozzle

Lyown

e 'Simpler’ case : sonic section in the valve such that Closed-end tube model is relevant

e Estimation of equivalent pipe length taking the nozzle geometry into account not
straightforward.
Good agreement between the experiments and the closed-end tube model
(max. deviation of 8% in estimation of f)
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Modelling

Modelling of damping

Two possible sources of damping :

e Acoustic radiation

e Viscous effects [
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Modelling

Modelling of damping

Two possible sources of damping :

e Acoustic radiation

e | Viscous effects [

Modelling* of the damping coefficient a (in time) after closing :

o E e (2)

where d can be seen as a 'penetration depth’ for viscous effects. For zero-mean flows,

d=/%
w

Lup

(*) Moloney & Hatten, American Journal of Physics, 2001
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Modelling

Modelling of damping

Estimation of logarithmic decrement 6 : experiments (symbols)/ model (solid line) :

3.2
34r A

361 A

381 A Lup =450mm

46

-481

Confirmation of viscous effects as predominant cause of damping
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Modelling

Modelling of damping

Estimation of logarithmic decrement 6 : experiments (symbols)/ model (solid line) :

Lup=450mm

Lyp=206mm

Confirmation of viscous effects as predominant cause of damping
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Modelling

e Conclusions
e Existence of pressure (acoustic) waves in pipes upstream and downstream of the
valve in a pulsed jet system.
e Decoupling of the pressure waves upstream and downstream of the valve.
e Oscillation frequency well approximated by closed-end tube model.

e Future work
e At high actuation frequencies, complex interactions between acoustic waves
generated at opening with waves generated at closing,
e Resonance if actuation frequency is close to the acoustic waves frequency : possible
optimization for large blowing velocity peaks at constant inlet pressure.
e Very different blowing velocity patterns at the nozzle exit can be achieved when
varying DC or actuation frequency around .
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Modelling
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