

FLOW CONTROL STRATEGIES FOR DRAG REDUCTION OF A MID-SCALE TRAILER MODEL

<u>Patricia Sujar-Garrido;</u> Marc Michard and Thomas Castelain Laboratoire de mécanique des fluides et d'acoustique, Lyon

CONTROL STRATEGY ON A SIMPLIFIED TRAILER

CONTENTS

□ Introduction:

- Wake topologies related to the underbody momentum
- Choice of one class for control

□ Medium/high frequency forcing (St_{act} = 5-15)

- Effects on mean field, deflection angle, pressure field
- Changes within the turbulence

Forcing strategy (Local forcing) Influence on pressure recovery a

- Influence on pressure recovery and drag reduction
- How to improve the control efficiency?

Conclusions & perspectives

Wake topologies

GDR Contrôle des décollements- IMFT, Toulouse - 8-9th November 2018

Wake topologies: selection of one case of study

Spatially-averaged mean base pressure

Medium and high frequency forcing : mean velocity

 $(f_{act} = 1050 \text{ Hz}, \text{ S}t_{act} = 15)$

effect of actuation?

> Deflection of the potential flow is the main

Mean velocity magnitude in both mid-planes

15

x* |

0.5

with control

GDR Contrôle des décollements- IMFT, Toulouse - 8-9th November 2018

Medium and high frequency forcing : deflection of the potential flow

GDR Contrôle des décollements– IMFT, Toulouse – 8-9th November 2018

Medium and high frequency forcing : mean pressure

 large area with negative pressure trapped by the curved jet

Mean pressure map in the vertical mid-plane & in the base

Medium and high frequency forcing : mean pressure

without control :

- o base pressure vertically stratified
- o large area with negative pressure

with control

- global pressure recovery in the near wake linked with the global shift of wall pressure
- local large negative pressure peak over the base edge and the flap
- faster pressure recovery of the potential flow in *x* direction

To be highlighted from this pressure analysis :

- > good agreement with pressure measurements
- Iarge pressure peak due to combination of passive and active actuation
- > important base pressure recovery ($\gamma_p \sim 30\%$)

Mean pressure map in the vertical mid-plane & in the base

GDR Contrôle des décollements- IMFT, Toulouse - 8-9th November 2018

Medium and high frequency forcing : effects on the curved jet

without control

□ mass flux convected from the underbody flow towards the upper part of the base

with control

 \Box increase of control intensity ($P_{rel} \rightarrow C_{\mu}$) :

- o impingement of the curved jet moves upstream from upper shear layer towards flap
- o negative vertical velocity above the flap

- > Side shear layers are free from disturbances.
- > Upper shear layer is linked to the curve jet
- > Interaction curved jet/upper shear layer play a role in the development of turbulence?

Medium and high frequency forcing : turbulence in the shear layer

turbulent stresses higher in the upper SL \Box low turbulent activity curved jet (|U| ~ 0.3 U inf)

with control

without control

□ upper SL: turbulence level fewly increased □ side SL : reduction of turbulent stresses ($x^* \sim 0.1$)

Similar conclusions for higher frequency actuation

Summary

- turbulent activity remains low
- Triggering instabilities by the impinging jet ?
- Effect of forcing on turbulence level related with pressure recovery?

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

1.5

x/H

1.5

Forcing strategy : energetic considerations

Global efficiency

- □ Ratio between power recovery by drag reduction and power consumption for air compression
- Acoustic feature (W Michard et al. GDR 2017 Orléans)
- Mass flow nearly proportional to:
 - P_{rel} (valve inlet pressure at a fixed frequency)
 - DC (duty cycle)
 - N (number of actuators)

□ Present investigation focuses on reducing number of actuators with fixed values of f_{act} and DC □ Local forcing ? → limited number of actuator rows

GDR Contrôle des décollements- IMFT, Toulouse - 8-9th November 2018

Forcing strategy : energetic considerations

Evolution of pressure recovery and drag reduction for different control strategies (& increase control intensity)

Results matching with previous analysis of the forcing effect on the individual shear layers

GDR Contrôle des décollements– IMFT, Toulouse – 8-9th November 2018

CONCLUSIONS and PERSPECTIVES

- > Analysis of class III wake topology \rightarrow Importance of the curved jet
- Global forcing flow results:
 - Wake dimensions reduction
 - No vertical symmetrisation (natural asymmetric flow) since injection momentum is
 not modifying the underbody flux
 - Angle deflection more important in the side shear layers
 - Low level of turbulence compared with a class IV case
 - Low effect of actuation on the turbulence level
- Control strategy :
 - TLR more performant for base pressure recovery and drag reduction
 - Similar results for class IV case but caused by similar mechanism?

Perspectives

Better understanding of:

- unsteadiness
- relation between control parameters and pressure distribution around the flap (and deflection angle of the flow near the flap)
- performance of the control strategies for other classes (e.g. topology in class I)

GDR Contrôle des décollements- IMFT, Toulouse - 8-9th November 2018

ÉCOLE CENTRALELYON