Développement d'un modèle de connaissance pour le contrôle de traînée aérodynamique des véhicules routiers

Kévin MARIETTE*, Éric BIDEAUX, Federico BRIBIESCA-ARGOMEDO, Damien Ébérard et Sylvie Sesmat

Laboratoire Ampère - INSA Lyon

11 juillet 2018

* kevin.mariette@insa-lyon.fr

Plan de la présentation

Introduction

- 2 Détails du projet ANR et objectifs d'étude
- Oéveloppement d'un modèle « gray box »
- Étude de la vectorisation des lignes de champ par le contrôle
- 5 Conclusions

Le contrôle d'écoulement autour des véhicules routiers

Les efforts aérodynamiques :

- $\rightarrow\,$ Responsables de 70% des efforts résistants (100 km/h)
- \rightarrow Enjeux industriels forts
- → Potentiel de réduction important pour tous les véhicules

Définitions et moyens détude

Différence de pression $\approx 30\%$ de la traînée

Méthodes de réduction de la traînée

Le projet ANR Activ'Road : Acteurs et objectifs

Partenariat académique et industriel :

Points clés :

- Contrôle actif
- Haute fréquence (→ 1kHz),
- Jets pulsés
- Voiture et camion.

Proposer un contrôle robuste de la traînée de pression en boucle fermée.

Prérequis du contrôle et méthodologie

Dispositif expérimental et nature de l'écoulement

Maquette expérimentale :

Champ de vitesses $(V_{\infty} = 15m.s^{-1})$

- Régime turbulent : $Re_H > 10^5$
- Incompressible
- Mesures directes de pressions délicates

Particularités de l'écoulement contrôlé

Champs turbulents moyennés

$$\gamma_{\mathcal{P}} = \frac{\langle \mathcal{P} \rangle - \mathcal{P}_{ref}}{\langle \mathcal{P}^0 \rangle - \mathcal{P}_{ref}}$$

Particularités de l'écoulement contrôlé

Champs turbulents moyennés

$$\gamma_{\rm P} = \frac{<{\rm P}>-{\rm P}_{\rm ref}}{<{\rm P}^{\rm 0}>-{\rm P}_{\rm ref}}$$

Modèle de couche de mélange (CM) stationnaire

Vectorisation de l'écoulement : l'angle de déviation α

Comparaison des meilleurs gains en

pression obtenus

Ampère

Évolution des coefficients δ et $\gamma_{\rm p}$ avec la pression de soufflage

Définition de δ :

$$\delta = \frac{1}{\Delta x} \int \sin(|\alpha|) dx$$

Utilisation du débit massique en sortie d'électrovannes

Débit d'air injecté en fonction de la pression amont

Allure caractéristiques des jets

Corrélations au débit Q_m de γ_p et de δ

Conclusions sur l'analyse des données

Vectorisation de l'écoulement au bord de la maquette

- Potentiellement quantifiable via δ
- Liée à la quantité de mouvement injectée
- Semble impacter la répartition de pression au culot

Exploration et analyse complémentaire requise

- Données statistiques à compléter
- Liaison avec les équations physiques à venir
- Garder en vue la définition d'un observateur pour le contrôle

Campagne d'essai réalisée en juin :

- Mesures par PIV
- Essais de contrôle du barycentre des pressions au culot
- Effets d'un contrôle multi-fréquenciel sur le sillage

Merci de votre attention.

S'il-vous-plaît, posez vos questions.

Zones à vitesse nulle, moyenne et limites de la zone de mélange

Modèles analytiques de référence

La couche de mélange de Goertler

0

Assumptions :

• $v_s >> v_b$ • $\vec{v}_1 \cdot \vec{x}_2 \approx 0$

Viscosité turbulente :

$$-\rho \overline{v'_i v'_j} = \mu_t \left[\frac{\partial \overline{v_i}}{\partial x_j} + \frac{\partial \overline{v_j}}{\partial x_i} \right], \mu_t \text{ fixé}$$

Champ de vitesses auto-semblable

Résultats :

$$\overline{v_1}(x_1, x_2, t) = \frac{v_s - v_b}{2} \left[1 - erf\left(\sigma \frac{x_2}{x_1}\right) \right] + v_b, \sigma \text{ fixe}$$

Modèles analytiques de référence

Écoulement de Saint-Venant

Équations de Navier-Stokes décrites sous l'hypothèse de couche de mélange turbulente (2/2)

System d'équations de Reynolds

Équations 2D URANS

Vitesses des jets d'air en sortie de diffuseur

Régressions linéaires sur les nuages de points de δ et γ_p

